The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice
نویسندگان
چکیده
Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 G: peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (μCT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (-81%) and bone formation (-80%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor β (ERβ, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased β-catenin, suggesting that ERβ might mediate these negative effects through inhibition of osteoanabolic Wnt/β-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398%) and bone formation (+637%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERβ was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in confined target populations.
منابع مشابه
Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon
BACKGROUND Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. PURPOSE To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-fr...
متن کاملThe inflammatory phase of fracture healing is influenced by oestrogen status in mice
BACKGROUND Fracture healing is known to be delayed in postmenopausal, osteoporotic females under oestrogen-deficient conditions. Confirming this, experimental studies demonstrated impaired callus formation in ovariectomised animals. Oestrogen-deficiency is known to affect the immune system and the inflammatory response during wound healing. Because a balanced immune response is required for pro...
متن کاملLow-magnitude high-frequency vibration accelerates callus formation, mineralization, and fracture healing in rats.
Fracture healing is a biological regenerative process that follows a well-orchestrated sequence. Most healing is uneventful and enhancement of normal fracture healing is not commonly done, although it is clinically important in the recovery and regain of functions after fracture. This study investigated the osteogenic effect of low-magnitude high-frequency vibration (LMHFV, 35 Hz, 0.3 g) on the...
متن کاملLow Magnitude High Frequency Vibration Treatment Promotes Osteoporotic Fracture Healing by Enhancing SDF-1 mediated Mesenchymal Stem Cell Recruitment
متن کامل
Low-magnitude high-frequency vibration enhanced mesenchymal stem cell recruitment in osteoporotic fracture healing through the SDF-1/CXCR4 pathway.
Low-magnitude high-frequency vibration (LMHFV) has been proven to promote osteoporotic fracture healing. Mechanical stimulation was reported to enhance SDF-1/CXCR4 signalling in mesenchymal stem cells (MSCs). We hypothesised that LMHFV promoted osteoporotic fracture healing by enhancing MSC migration through the SDF-1/CXCR4 pathway. 152 ovariectomised SD-rats received closed femoral fracture in...
متن کامل